资料

原子力显微镜的发展以及工作原理

上传人:Tom编辑

上传时间: 2010-11-19

浏览次数: 793

  Ⅰ. 原子力显微镜是什么?

  原子力显微镜(Atomic force microscopy,AFM)是一种以物理学原理为基础,通过扫描探针与样品表面原子相互作用而成像的新型表面分析仪器。它属于继光学显微镜、电子显微镜之后的第三代显微镜。

  AFM通常利用一个很尖的探针对样品扫描,探针固定在对探针与样品表面作用力极敏感的微悬臂上。悬臂受力偏折会引起由激光源发出的激光束经悬臂反射后发生位移。检测器接受反射光,最后接受信号经过计算机系统采集、处理、形成样品表面形貌图像。

  Ⅱ. 原子力显微镜的发展

  早期研制的为接触式原子力显微镜,它包括恒力模式和恒高模式。前者利用反射光位移引起的光电二极管输出电压的变化构成反馈回路控制压电陶瓷管伸缩,从而调节固定于扫描器上样品的位置,保持样品和探针间作用力(悬臂弯曲度)不变,测量每一点高度的变化。后者保持样品和探针间的距离不变,测量每一点作用力的大小。这种模式在调节探针与样品距离前即可直接观测悬臂弯曲度的改变。

  除传统的接触式之外,1993年又研制出轻敲式原子力显微镜。该显微镜在扫描过程中探针与样品表面轻轻接触,悬臂受存在于两者间的排斥力作用随样品表面起伏发生高频振颤。由于探针与样品的接触短暂,因此它更适用于质地脆或固定不牢的样品。

  扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。

  Ⅲ. 原子力显微镜工作原理

  原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.

  Ⅳ. 原子力显微镜优缺点

  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。

| 收藏本文
最新评论

用户名: 密码: