资料

图解:LED背光照明与散热技术

上传人:杨士贤(博士)

上传时间: 2011-05-25

浏览次数: 243


  LED的散热问题

  目前提高LED亮度有两种方式,分别为增加晶片亮度以及多颗密集排列等方式,这些方法都需输入更高功率之能量,而输入LED的能量,大约20%会转换成光源,剩下80 %都转成热能,然在单颗封装内送入倍增的电流,发热自然也会倍增,因此在如此小的散热面积下,散热问题会逐渐恶化。 此封装如仅应用在只使用1~4颗LED的散光灯,散光灯点亮时间短暂,故热累积现象不明显;如应用在液晶电视的背光上,既使使用高亮度LED,也要密集排列并长时间点亮,因此在有限的散热空间内难以适时的将这些热排除于外。

  但很不幸的,产生的热,对晶粒是很严重的问题。 当晶粒介面温度升高时,量子转换效率导致发光强度下降,且寿命也会跟着下降;放射波长改变,使得色彩稳定性降低;受热时因不同材质的膨胀系数不同,会有热应力累积使产品可靠性降低,使用年限也会降低。 因此,散热是高功率LED极需解决的重要问题。

  基本热力学

  传统光源白炽灯有73%以红外线辐射方式进行散热,在周围可以感受到高温高热,所以灯泡本体热累积现象轻微,而LED产生的光,大多分布在以可见光或紫外光居多,不能以辐射方式帮助散热,又因LED封装面积较小,难以将热量散出,导致LED照明品质有很大的问题产生,由此得知LED热能问题是目前急待被解决。

  在讨论LED热管理的议题前,首先要先了解基本热力学。 基本上散热有3种方式(表2),分别为“传导式散热”、“对流式散热”以及“辐射式散热”,从以上三者的理论公式可以分析出,散热最主要问题点就在“面积”;另外,由于因辐射在接近室温情况下散热量非常小,所以最主要讨论的散热方式在传导和对流两方面。

  


  在了解散热之前还要知道热欧姆定理,传统的电流欧姆定理:V=IR,压降=电流×电阻,电阻愈大,压降就愈大,表示电压在元件中消耗量愈大;同样的,热欧姆定理:ΔT=QR,温差=热流×热阻,当热阻愈大时,就有愈多的热残留在元件内,这说明了散热效果要越好,热阻就要越低。 热欧姆定理是以热阻(Thermal resistance)将热传以物理量量化,计算方式为LED介面温度与室温的温差除以单位输入功率。 简单来说,如热阻为10℃/W,表示每输入1W的能量会是LED上升10℃。

  LED的热管理

  热传是以等向性的方式传递,传递方向可大致区分成垂直与水平方向。 垂直方向相当于将热阻串联,串联数愈多,热阻愈大。 水平传递等于是并联热阻,并联热阻数愈多热阻越低,表示增大传导面积和加强传热速率。 因此要有较佳的散热效果,所传导的层数要越少且截面积要越大。

  图2为LED元件垂直热阻图,热源由介面产生再垂直向上下传递,因保护层封装采用低热传系数材料,加上面积又小,所以仅有极少量热能向上传递而被忽略计算,所以传递总热阻=介面到黏接点热阻+黏接点到基板热阻+基板到载板热阻+载板到空气热阻,热会由介面迅速传递到大面积之载板或散热片,再经由水平传递到大面积的表面上与空气热交换对流完成散热。

  


| 收藏本文
最新评论

用户名: 密码: