目前,世界范围内在GaN基高亮度LED及半导体全固态照明光源的研发方面居于领先水平的公司主要有:美国的Lumileds、HP/Agilent和Cree,日本的Nichia、ToyodaGosei、Sony、Toshiba和其他综合性大公司(如NEC、Matsushita、Mitsubishi及Sumitomo等),德国的Osram等等。这些跨国公司多数有原创性的专利,引领技术发展的潮流,占有绝大多数的市场份额。而我国台湾省的一些光电企业(如国联光电、光宝电子、光磊科技、亿光电子、鼎元光电等)以及韩国的若干研发单位,在下游工艺和封装以及上游材料外延方面也具备各自的若干自主知识产权,占有一定的市场份额。 调查显示,Nichia、Cree、Lumileds、OSRAM、ToyodaGosei、Toshiba和Rohm等占据了绝大多数市场份额的大公司拥有着该领域80%~90%的原创性发明专利(集中于材料生长、器件制作、后步封装等方面),而其余大多数公司所拥有的多是实用新型专利(主要针对器件可靠性以及产品应用开发方面进行研究)。 材料基础:技术路线趋同 GaN基宽带隙半导体材料的研究始于20世纪六七十年代,但较之其他传统的III/V族化合物半导体(如GaAs基和InP基材料),其商品化应用到20世纪90年代初/中期才得以实现,因此有关其基础物理/化学性质的研究尚存在着许多难题。在这些方面,美国、日韩和欧洲的一些著名学府和科研机构享有研究声誉,这些学术单位在与合作企业进行各项产业化技术研究(基于MOCVD金属有机化学气相外延生长方法)的同时,也通过RS-MBE(射频源分子束外延)等技术路线对GaN基材料的基础物理/化学性质进行研究。 我们对1993年到2002年这10年间发表于Journal of CrystalGrowth、Applied Physics Letters这两份具有代表性的SCI索引期刊上的学术论文做了统计。在所抽样调查的877份有关GaN发光器件的研究论文中,约60%以上的实验样品(531份相关论文)是由MOCVD技术外延生长获得的,其余40%的实验样品则由RS-MBE、HVPE等其他技术手段获得的。 可见,就整个全球产业界而言,基于MOCVD外延生长的技术路线是发展GaN基光电子材料与器件的主要技术潮流,RS-MBE等技术路线更适于进行基础性学术研究工作。所以,本专利调查报告主要针对MOCVD外延生长的GaN材料来展开。 对比由SiC、ZnS及其他II/VI族化合物半导体宽带隙材料所制成的蓝绿光发光器件,GaN基器件的寿命长,发光效率高,价格相对便宜,被公认为是全固态照明光源用管芯器件的首选材料。 外延技术:竞争焦点 总体来说,GaN基材料的外延生长是发展GaN基高亮度LED和全固态半导体白光照明光源的核心技术,是所有关键难题中的重中之重,因此在这个问题上有大量专利被申请,如高质量GaN外延生长设备(US5433169、EP0887436)、衬底预处理技术(JP7142763)、缓冲层技术(采用AlN的JP2000124499、采用GaN的JP7312350、采用SiNx的EP1111663)、多缓冲层技术(US6495867)、采用超晶格阻断位错(US2001035531)、横向外延过生长技术(EP0942459)以及悬挂外延技(US6285696)等等。 我们将大致按照有关技术的发展历程来做一概述。首先,日亚化学公司开创性地申请了双束流MOCVD系统专利(US5433169),由于这种新型MOCVD系统的出现,MOCVD生长的GaN材料晶体质量得以大大提高。 其次,缓冲层技术的出现解决了异质衬底上生长GaN材料时大晶格失配和热失配的问题。由于缓冲层技术条件下生长出的GaN材料仍具有较高的缺陷密度,会影响到发光器件的发光强度、工作寿命和反向特性等重要技术指标,因此人们又在该基础上发展了多缓冲层技术,从而获得更高质量的GaN单晶材料。 至此,GaN材料已经足可以满足一般高亮度LED器件制作的需求,但要在此基础上制作出GaN基蓝/绿光激光二极管还必须进一步降低GaN基材料的缺陷密度。随后出现的横向外延过生长技术(ELOG,EpitaxyofLateralOver-growth)和悬挂外延技术正是为了解决这一问题而提出的。当然,以这种ELOG为代表的外延优化技术成本较高,用于制作大功率照明管芯器件的GaN外延材料没必要非采取该条技术路线,但其设计思想是值得我们借鉴的,即最大限度地设法降低外延材料中的缺陷密度,提高器件综合性能。 在GaN基光电子器件中,大量的专利内容集中于发光区的结构设计,主要包括:普通双异质结(EP0599224);一般的方形量子阱(包括单量子阱和多量子阱、EP1189289和JP11054847);梯形量子阱(US6309459);三角量子阱以及非对称量子阱(GB2361354);采用非掺杂的载流子限制层(US2002093020);活性层与p型层之间加入缓冲层(US2001011731);采用多量子垒(MQB)做载流子限制层(US2001030317)等等。这些专利设计的目的均是为了提高活性区的发光效率。 器件制作:以8项典型技术为代表基于物理机制和工艺技术的讨论,我们对有关GaN基发光产品的全套器件制作专利做了分析,现列举8项典型代表技术: 一是美国专利US5631190(Methodforproducinghighefficiencylight-emittingdiodesandresultingdiodestructures),即制作高效发光二极管和实现二极管结构的方法。其专利拥有者为CreeResearch。 二是美国专利US5912477(Highefficiencylightemittingdiodes),即高效率发光二极管,其专利拥有者为CreeResearch。 三是专利WO0141223(ScalableLEDwithimprovedcurrentspread-ing),即具有改进的电流分布层的发光二极管。其专利拥有者为CreeRe-search。 四是美国专利US6526082(P-con-tactforGaN-based semiconductorsutilizingareverse-biasedtunneljunction),即用反偏的隧道二极管制作GaN基半导体的P型接触层。其专利拥有者为Lumileds。 五是美国专利US2002017652(Semiconductorchipforoptoelectronics),即管芯的制作方法。其专利拥有者为Osram。 六是US6538302(Semiconductorchipandmethodfortheproductionthereof),即半导体芯片及其制作方法。其专利拥有者为Osram。 七是专利DE10064448。其专利拥有者为Osram。 八是美国专利US6078064(Indiumgalliumnitridelightemittingdiode),即InGaN发光二极管。其专利拥有者为EPISTAR。 其他有关GaN基高亮度LED及全固态照明光源用管芯器件制作的重要专利还有WO03026029、US2003015708、US2003062525和US2002017696等等。 总之,基于产业化技术需求的GaN基器件制作,既要考虑到工艺可操作性和简易性,同时也必须以一定的复杂性与冗余性手段来保证器件的可靠性与稳定性,这也是我们足可挖掘的技术创新点之一。 封装技术:焊装和材料填充专利集中 在制作完成了高亮度GaN管芯器件之后,还要经磨片、划片、裂片、焊装、树脂和荧光材料填充等后步封装工艺。其中,知识产权主要集中于焊装和树脂/荧光材料填充这两大部分。 在焊装问题方面,Nichia早期的电极设计和封装专利已有所覆盖,如JP7221103、JP8279643和JP9045965等等。在器件热沉设计上,Lumileds公司拥有热沉设计技术,其基于Si基材料倒装焊("Flip-Chip")的封装工艺居业界领先水平,代表专利包括US2003089917、US6498355和US6573537;"Flip-chip"倒装焊优化设计包括EP1204150和EP1256987;Power package包括US6492725。 在出光提取效率方面,Lumileds的倒装焊技术中采用了高反射率欧姆电极和侧面倾斜技术以增加采光(其专利号为US2001000209),但Osram公司在此之前于SiC基GaN-LED的出光提取方面开创性地提出了端面"Faceting"概念,覆盖了大多数的相关专利。此外,HP(EP1081771)、Cree(US5631190)在管芯出光采集方面也均有各自的特色。 在树脂和荧光材料填充方面,值得注意的是有关新型高效长寿命可见光荧光材料的开发工作,如Nichia的JP9139191和Lumileds的EP1267424等等。总之,GaN基大功率器件的封装技术方面