资料

图文详解:大功率白光LED封装技术及发展趋势

上传人:陈辉

上传时间: 2011-06-04

浏览次数: 208

 一、前言

  大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,一直是近年来的研究热点,特别是大功率白光LED封装更是研究热点中的热点。LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。

  LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED封装先后经历了支架式 (LampLED)、贴片式(SMDLED)、功率型LED(PowerLED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对 LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。

  二、大功率LED封装关键技术

  大功率LED封装主要涉及光、热、电、结构与工艺等方面,如图1所示。这些因素彼此既相互独立,又相互影响。其中,光是LED封装的目的,热是关键,电、结构与工艺是手段,而性能是封装水平的具体体现。从工艺兼容性及降低生产成本而言,LED封装设计应与芯片设计同时进行,即芯片设计时就应该考虑到封装结构和工艺。否则,等芯片制造完成后,可能由于封装的需要对芯片结构进行调整,从而延长了产品研发周期和工艺成本,有时甚至不可能。

  


图1 大功率白光LED封装技术

  (一)低热阻封装工艺

  对于现有的LED光效水平而言,由于输入电能的80%左右转变成为热量,且LED芯片面积小,因此,芯片散热是LED封装必须解决的关键问题。主要包括芯片布置、封装材料选择(基板材料、热界面材料)与工艺、热沉设计等。

  LED封装热阻主要包括材料(散热基板和热沉结构)内部热阻和界面热阻。散热基板的作用就是吸收芯片产生的热量,并传导到热沉上,实现与外界的热交换。常用的散热基板材料包括硅、金属(如铝,铜)、陶瓷(如Al2O3,AlN,SiC)和复合材料等。如Nichia公司的第三代LED采用CuW做衬底,将1mm芯片倒装在CuW衬底上,降低了封装热阻,提高了发光功率和效率;Lamina Ceramics公司则研制了低温共烧陶瓷金属基板,如图 2(a),并开发了相应的LED封装技术。该技术首先制备出适于共晶焊的大功率LED芯片和相应的陶瓷基板,然后将LED芯片与基板直接焊接在一起。由于该基板上集成了共晶焊层、静电保护电路、驱动电路及控制补偿电路,不仅结构简单,而且由于材料热导率高,热界面少,大大提高了散热性能,为大功率LED阵列封装提出了解决方案。德国Curmilk公司研制的高导热性覆铜陶瓷板,由陶瓷基板(AlN或Al2O3)和导电层(Cu)在高温高压下烧结而成,没有使用黏结剂,因此导热性能好、强度高、绝缘性强,如图2(b)所示。其中氮化铝(AlN)的热导率为160W/mk,热膨胀系数为4.0×10-6 /℃(与硅的热膨胀系数3.2×10-6/℃相当),从而降低了封装热应力。

  


图2(b)覆铜陶瓷基板截面示意图

| 收藏本文
最新评论

用户名: 密码: